59 research outputs found

    Real-Time Contrast Enhancement to Improve Speech Recognition

    Get PDF
    An algorithm that operates in real-time to enhance the salient features of speech is described and its efficacy is evaluated. The Contrast Enhancement (CE) algorithm implements dynamic compressive gain and lateral inhibitory sidebands across channels in a modified winner-take-all circuit, which together produce a form of suppression that sharpens the dynamic spectrum. Normal-hearing listeners identified spectrally smeared consonants (VCVs) and vowels (hVds) in quiet and in noise. Consonant and vowel identification, especially in noise, were improved by the processing. The amount of improvement did not depend on the degree of spectral smearing or talker characteristics. For consonants, when results were analyzed according to phonetic feature, the most consistent improvement was for place of articulation. This is encouraging for hearing aid applications because confusions between consonants differing in place are a persistent problem for listeners with sensorineural hearing loss

    Establishing a library of resources to help people understand key concepts in assessing treatment claims—The “Critical thinking and Appraisal Resource Library” (CARL)

    Get PDF
    Background People are frequently confronted with untrustworthy claims about the effects of treatments. Uncritical acceptance of these claims can lead to poor, and sometimes dangerous, treatment decisions, and wasted time and money. Resources to help people learn to think critically about treatment claims are scarce, and they are widely scattered. Furthermore, very few learning-resources have been assessed to see if they improve knowledge and behavior. Objectives Our objectives were to develop the Critical thinking and Appraisal Resource Library (CARL). This library was to be in the form of a database containing learning resources for those who are responsible for encouraging critical thinking about treatment claims, and was to be made available online. We wished to include resources for groups we identified as ‘intermediaries’ of knowledge, i.e. teachers of schoolchildren, undergraduates and graduates, for example those teaching evidence-based medicine, or those communicating treatment claims to the public. In selecting resources, we wished to draw particular attention to those resources that had been formally evaluated, for example, by the creators of the resource or independent research groups. Methods CARL was populated with learning-resources identified from a variety of sources—two previously developed but unmaintained inventories; systematic reviews of learning-interventions; online and database searches; and recommendations by members of the project group and its advisors. The learning-resources in CARL were organised by ‘Key Concepts’ needed to judge the trustworthiness of treatment claims, and were made available online by the James Lind Initiative in Testing Treatments interactive (TTi) English (www.testingtreatments.org/category/learning-resources).TTi English also incorporated the database of Key Concepts and the Claim Evaluation Tools developed through the Informed Healthcare Choices (IHC) project (informedhealthchoices.org). Results We have created a database of resources called CARL, which currently contains over 500 open-access learning-resources in a variety of formats: text, audio, video, webpages, cartoons, and lesson materials. These are aimed primarily at ‘Intermediaries’, that is, ‘teachers’, ‘communicators’, ‘advisors’, ‘researchers’, as well as for independent ‘learners’. The resources included in CARL are currently accessible at www.testingtreatments.org/category/learning-resources Conclusions We hope that ready access to CARL will help to promote the critical thinking about treatment claims, needed to help improve healthcare choices

    Increment and decrement detection in sinusoids as a measure of temporal resolution

    Get PDF
    Measuring thresholds for the detection of brief decrements in the level of a sinusoid is an established method of estimating auditory temporal resolution. Generally, a background noise is added to the stimulus to avoid the detection of the spectral splatter introduced by the decrement. Results are often described in terms of a temporal-window model, comprising a band-pass filter, a compressive nonlinearity, a sliding temporal integrator, and a decision device. In this study, thresholds for increments, as well as decrements, in the level of a 55 dB SPL, 4-kHz sinusoidal pedestal were measured as function of increment and decrement duration in the presence of a broadband background noise ranging in spectrum level from –20 to +20 dB SPL. Thresholds were also measured using a 55-dB, 8-kHz pedestal in the absence of background noise. Thresholds for decrements, in terms of the dB change in level (L), were found to be more dependent on duration than those for increments. Also, performance was found to be dependent on background-noise level over most levels tested. Neither finding is consistent with the predictions of the temporal-window model or other similar models of temporal resolution. The difference between increment and decrement detection was more successfully simulated by using a decision criterion based on the maximum slope of the temporal-window output
    corecore